No Thumbnail Available

Numerical performance of non-monotone line searches on unconstrained global optimization problems

(2023)

Files

Chauvaux_14501800_2023.pdf
  • Open access
  • Adobe PDF
  • 4.68 MB

Details

Supervisors
Faculty
Degree label
Abstract
In this work, we investigate the use of non-monotone line search methods to approximately solve unconstrained global optimization problems. Firstly, we present an extensive numerical comparison between monotone and non-monotone line search methods. The results show that non-monotone line search methods outperform the monotone Armijo line search, providing significantly better approximate solutions, with iterates exhibiting the ability to escape from nearby non-global local minimizers. Secondly, we develop a new non-monotone line search for problems in which the optimal function value is known a priori. We find numerically that this new method outperforms existing monotone and non-monotone methods in instances of the Molecular Distance Geometry Problem.